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The Essence of the Bayesian Approach

Observations X are random variables

Are Parameters © random variables?

Oxford English Dictionary: "Parameter: a Constant Variable”
For Bayes, parameters are random variables, and then is able to
respond the scientific question:

Prob( Theory|Data) T
as oppposed to the Mathematical question:
Prob(Data| Theory) D

P-Values are Type D, but science is about Type T.
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Parameter Random Variables in Estimation and Testing

Testing:
Ho:0=00VS Hi:0=06,
What is the Prob(Hg|Data)? So Hp is a Random Variable!
Estimation: Likelihood: Prob(X|6:)
Level I: Prob(61]62)
Level Il: Prob(62|03), So 01 and 6, are random variables.



The Evidence, The Bayes Factor, The Posterior Probability

H; : X has density fi(x|0;),i =0,...,1.
The Evidence: The marginal Likelihood
mi(x) = / F(x(0:):(6,)d6;.
The Bayes Factor of M; to M;:

By — m;(x)

Posterior Model Probabilities:

P(M;)mi(x)

o P(Mj)m;(x)

P(Milx) =




Testing: Bayes VS Non-Bayes: The difference is NOT
about Mathematics

Neyman-Pearson Lemma: Optimal Test To Minimize
a* TypelError + b x Typellerror is

RejectHj : if: LikelihoodRatiog; < b/a

The problem is how to choose b/a.



Testing: Bayes VS Non-Bayes: The difference is NOT
about Mathematics

Neyman-Pearson Lemma: Optimal Test To Minimize
a* TypelError + b x Typellerror is

RejectHj : if: LikelihoodRatiog; < b/a
The problem is how to choose b/a.
Pval = Prob(LikelihoodRatioy 1 < ObservedLikRatio)

b/a assigned indirectly.

Posterior Probabilities
Prior Probabilities

= Bayes Factor = LikRatiog1 < r

b/a = r, say r = 1/20 assigned directly, so BOTH type I error and
Type Il error go to zero as the sample size grows.

Pericchi and Pereira (2015) Brazilian Jour of Prob and Statistics,
for generalizations.
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For many years there has been an important discussion on the
validity of methods for Null Hypothesis Significance Testing
(NHST).



The crisis of P-Values: Non Reproducible Findings

For many years there has been an important discussion on the
validity of methods for Null Hypothesis Significance Testing
(NHST).

As a worrying consequence of this controversy, statistical inference
methods are losing the trust of sectors of the scientific community,
as it is reflected by the recent editorial of Basic and Applied Social
Psychology (Trafimow and Marks, 2015) banning the use of
procedures as p-values, confidence intervals and related methods
from the papers published in BASP.

As the editors remark, “In the NHSTP, the problem is in traversing
the distance from the probability of the finding, given the null
hypothesis, to the probability of the null hypothesis, given the
finding” . Increasingly large sections of the scientific community are
speaking load and clear: p-values should no longer be the deciding
balance of science.



How to convert P-Values into Bayes Factors to try to
reduce non-reproducible findings?
Calibrating the " Robust Lower Bound”.

In Sellke, Bayarri and Berger (2001) (Infimum over Unimodal and
Symmetric Priors), a lower bound is proposed for calibrating
p-values when p,, < e~ 1,

Bo1 > Bi(pvar) = —€epvai l0ge(pyar)

It is very simple and it can be easily calculated, but becomes less
informative when n increases.
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How to convert P-Values into Bayes Factors to try to
reduce non-reproducible findings?
Calibrating the " Robust Lower Bound”.

In Sellke, Bayarri and Berger (2001) (Infimum over Unimodal and
Symmetric Priors), a lower bound is proposed for calibrating
p-values when p,, < e~ 1,

Bo1 > Bi(pvar) = —€epvai l0ge(pyar)

It is very simple and it can be easily calculated, but becomes less
informative when n increases.

Can we find a way of using the lower bound in the calibration of

C, for the adaptive « levels?
Can we calibrate this lower bound to make it closer to the actual

value of a Bayes factor?



Motivation

Lets go back to the approximation

fo(x|0o)
f1(x|01)
x2(q) — qlog(n*) + C*

—2log(Bo1) = —2log
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Motivation

Lets go back to the approximation

fo(x|0o)
f1(x|01)
x2(q) — qlog(n*) + C*

) — qlog(n*) + C*

—2log(Bo1) = —2log

Q

Idea: Assuming « fixed, select C* such that our approximation for
Bo1 equals By («) for fixed (typically low) value of n* (say ng).

A first obvious selection:
C* = —2logBy () + qlog(nL) + x2(q)

where B;(a) = —ealoga.



This leads to

q
n*\?2
Bo1 = B («) ( >

np
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of Bayes factors based on proper objective priors (like intrinsic
priors and Berger's robust priors) for several examples.



This leads to

Nl

n*
Bo1 = B («) (”L)

First reaction:
Too good to be true!

Lets compare the behavior of this approximation with the behavior
of Bayes factors based on proper objective priors (like intrinsic
priors and Berger's robust priors) for several examples.

Two initial proposals for n; are np = m+1 and n. = 2m, where m
is the minimal training sample size.



Example 1: Normal distribution, ¢ known

(Berger, J.0.and Pericchi L.R 2015. Bayes Factors. Encyclopedia
of Statistical Sciences.)

X1, X2, ..., X, i.id sample from N(6,0?), 0® known.
It is desired to test Hy : 0 = g vs Hy : 6 # 0.



Example 1: Normal distribution, ¢ known

(Berger, J.0.and Pericchi L.R 2015. Bayes Factors. Encyclopedia
of Statistical Sciences.)

X1, X2, ..., X, i.id sample from N(6,0?), 0® known.
It is desired to test Hy : 0 = g vs Hy : 6 # 0.

Assume a prior for 6 that is N(fp, 72). It is also usual to select
72 = ko?. In particular, k = 2 corresponds to the intrinsic prior for
0

The Bayes factor obtained using the intrinsic prior is

2
801:\/1+2nexp< >

.
2+1/n
where z = \/n(x — 0p) /o
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Table of a to Posterior Probabiities of Hy, N, = 4

H N « 0.1 005 001 0005 0.001 0.0005 H

4 038 029 01 0.07 0.02 0.01
20 0.58 048 022 014 0.04 0.02
50 0.69 059 031 020 0.06 0.03

Jeffreys Table of Evidence:

P(Hp) > 0.5, Hy Supported, 0.5 > P(Hp) > 0.25 Mild Evidence,
0.25 > P(Hp) > 0.1 Substantial, 0.1 > P(Hp) > 0.03 Strong
0.03 > P(Hp) > 0.01 very strong, 0.01 > P(Hp) Decisive.



Part Il
Bayesian estimation in practice: Using MCMC software.



Bayesian estimation (as hypothesis testing) is based on the
posterior distribution.

~p(0,y)  p(9)p(y|0)
plfly) = p(y) — ply)

where p(y) = [ p(8)p(y|60)dd (continuous case)

The calculation of the integral in the denominator can be very
difficult (or even impossible analytically). This is specially true in
the high dimension case.



Markov Chain Monte Carlo methods

Instead of solving the integral(s), the usual approach is using
Markov Chain Monte Carlo methods to obtain samples from the
posterior distribution. Here “Monte Carlo” implies random
sampling, while “Markov Chains” refer to the method of
simulation: iterative methods in which each iterate depends only
on the previous one. MCMC algorithms are built to guarantee that
the stationary distribution of the chain is the desired posterior
distribution.



Correlation, convergence and “burn in”

As every sample depends on the previous one, contiguous samples
from the Markov Chain can be correlated. This fact have some
consequences:

» Selected initial values can impact on the simulation chain
until a large number of samples has been obtained. For this
reason, a certain number of initial observations is discarded.
(“burn in period").

> Because of correlation, each observation gives only a fraction
of the information that would be obtained when using non
correlated iterates. so, if the correlation is high a large
number of samples will be needed to obtain precise results.



Convergence can be checked in several ways:
> Plot samples vs. iteration number. The behavior should
appear random.
» Run several chains using different initial values (they should
all converge to the same values)

» Formal convergence testing methods.



Some MCMC software

In many cases, existing software for MCMC methods can be used
(some complex cases require the researcher to code his/hers own
algorithms )

» BUGS (Bayes using Gibbs Sampler) Development of BUGS
began in 1989. Currently, the most used “flavors” are
WinBUGS (version 1.4.3, running over Windows) and
OpenBUGS (runing natively on Windows and Linux).

» JAGS (Just another Gibbs Sampler) Developed
independently, it runs natively on Windows, Mac, Linux and
several other varieties of Unix. It uses essentially the same
model description language than BUGS.

» STAN A more recent option, uses a similar model description
language but is conceptually different.

The examples shown in this talk use WinBUGS.



Example: Efron and Morris Baseball Data

Efron and Morris (1975, 1977) obtained a sample of batting
averages for 18 baseball player during the 1970 season. They used
the average obtained during the first 45 at-bats for predicting the
batting average for the rest of the season for each player.

The Direct Evidence Estimator is the individual MLE
(inadmissable and bad here), the Indirect Evidence Estimator is
the overall sample mean M=0.2654 (amazingly good here).



Batting average Batting average At bats

Player for first 45 for remainder for remainder
at bats of season of season
Clemente (Pitts, NL) 0.400 0.346 367
F. Robinson (Balt, AL) 0.378 0.298 426
F. Howard (Wash,AL) 0.356 0.276 521
Johnstone (Cal, AL) 0.333 0.222 275
Berry (Chi, AL) 0.311 0.273 418
Spencer (Cal, AL) 0.311 0.270 466
Kessinger (Chi, NL) 0.289 0.263 586
Alvarado (Bos, AL) 0.267 0.210 138
Santo (Chi, NL) 0.244 0.269 510
Swoboda (NY, NL) 0.244 0.230 200
Unser (Wash, AL) 0.222 0.264 277
Williams (Chi, AL) 0.222 0.256 270
Scott (Bos, AL) 0.222 0.303 435
Petrocelli (Bos, AL) 0.222 0.264 538
E. Rodriguez (KC, AL) 0.222 0.226 186
Campaneris (Oak, AL) 0.200 0.285 558
Munson (NY, AL) 0.178 0.316 408
Alvis (Mil, NL) 0.156 0.200 70

Table: Original data: 1970 batting averages for 18 MBL players. Overall
MEAN M=0.2654



How to Combine Direct and Indirect Evidence?

Efron and Morris assumption about the data is:

1.
\/,' ~ EBIH(45, p,)

where Y is the batting average for the first 45 at-bats, and p;
depends on each player’s ability.



The batting average for the rest of the season, R; can be modelled
as

1
Ri; ~ —Bin(n;, p;
Bin(r, )

where n; is the number of at bats for player i during the remainder
of the season.
They applied a variance stabilizing transformation to Yj,

X; = V45 arcsin (2Y; — 1)

In the sequel, we will use the transformed variable.



Model 1: Empirical Bayes analysis using conjugate model

This analysis is equivalent to Efron and Morris (1975)

Xi ~ Normal(pi,1),i=1,...,18
pi ~ Normal(M, ¢?)

Here M = X = —3.3166 and o2 such that (HIUQ) = zisz&i)-()y
so T = (02)"1=3.7853.

The calculations for this model can be made in closed form.




WinBUGS model:

model
{
for (i in 1: nplayers)
{
#
# Likelihood for X[il= sqrt(45)*arcsin(2Y[i]-1)
#

X[i]~ dnorm(mulil, 1)
mul[i]l~ dnorm(Mu,tau)
pbat [i]<-0.5*(sin(mu[i]/sqrt(45.))+1)

}
#
# Predicted average for the rest of the season
#
for(i in 1:nplayers)
{
thetal[i]l<-mu[i]/sqrt (45)
R[i]~ dnorm(thetali],atbat[i])
pred.bat[1]<-0.5*(sin(R[i])+1)
}



Data for the model

list(nplayers=18,X=c(-1.35074999608559, -1.65349439900760, -1.95971921115431,
-2.28443930236967, -2.60033503716442, -2.60033503716442, -2.92243068710524,
-3.25189908299015, -3.60573680589079, -3.60573680589079, -3.95492619729744,
-3.95492619729744, -3.95492619729744, -3.95492619729744, -3.95492619729744,
-4.31673666857481, -4.69383371133901, -5.08971235251556) ,

atbat=c(367, 426, 521, 275, 418, 466, 586, 138, 510, 200, 277, 270,435, 538,
186, 558, 408, 70),

tau=3.78527897894347, Mu=-3.31656313614355)



Some results for model 1

rern

3 Node stetiics o|B®]
noce mzar. sd MC error 25% median  97.5% start sample
predball] 02 00382 3364 02077 0280 0374 1000 12003
medbalsl 02862 003778 I79E4 02151 0287 0% 1000 1203
predbafs] 02822 003634 2G4 0218 0z819  03%5 1000 12003
predbalq 02774 Q04028 3H07E4 0208 07T 03T 000 12003
medbals] 02734 0038 LIBE4 0206 027 QM2 1000 12003
predbafé] 02737 003676 316864 0203 0727 03465 1000 12003
predbal7] 02888 003634 336E4 0203 0268 0341 1000 12003
medbalf] 02854 QL4768 3E4 04762 0267 0.%B 1000 1203
predbafq] 02597 003503 309264 013 02588 03312 1000 12003
medbalil] 02595 QL4288 33204 04793 02586 0.6 1000 1203
predbafll] 02545 003913 35424 01305 02531 0333 1000 12003
predba{l?] 0255 003095 330664 01305 0252 03 1000 12003
medballd 0248 Q308 336664 01361 02597 Q%m0 12003
predbaf14) 02553 003486 319264 01389 0255 0343 1000 12003
predba{ls] 02857 Q04367 3794 0477 0253 0T 000 12003
predbalte] 02498 O JAE4 0133 02491 08 1000 1203
predbafl7) 02448 003576 3.137E-4 04774 0439 03182 1000 12003
predba{ld] 02615 Q5781 S305E4 01386 02383 03615 1000 12003




Model 2: Full Bayes hierarchical analysis with high tail
prior for the precision

Instead of assigning fixed values to M and o2, we will assign
hyperpriors to them. In this example, we assign a "vague” normal
(with large variance) to M and a high tail distribution to o2 (a
Beta2 with parameters (1,1), which has polynomial tails)

Xi ~ Normal(p;,1),i=1,...,18
pi ~ Normal(M,o?)

M ~ N(0,10%)

0? ~ Beta2(1,1)

This model cannot be calculated in closed form!



WinBUGS code:

model
{
for (i in 1: nplayers)
{
# Likelihood for X[il]= arcsin(2Y[i]-1)
X[i]l~“dnorm(mulil, 1)
mul[i] “dnorm(Mu,tau)
pbat[i]1<-0.5*(sin(mu[il/sqrt(45.))+1)
}
# Prior for the common mean
Mu ~ dnorm(0,0.00001)
# Prior for the precision tau
tau<- 1/sigma2
P ~ dbeta(1,1)
sigma2 <- P/(1-P)
# Predicted average for the rest of the season
for(i in 1:nplayers)

{
thetal[i]l<-mu[i]/sqrt (45)
R[i] “dnorm(thetali],atbat[i])
pred.bat[i]<-0.5*(sin(R[i])+1)
}



Data can be written in a similar way

s

 Neds statitcs =
. noce  mean sd  NCeno25% median 975% stat  sampe 3
predbellf] 0.295 0.04835 985124 02117 02615 04030 1000 12003 =
pred.belf2] 0.2907 004603 0266 03 1000 12003
predbef3] 02657 0.04341 744854 02112 02623 0363 1000 12003
. predbellf] 02799 004615 7454 0.0852 02771 0301 1000 12003
predbell3] 0.2755 0.04193 5761=4 0.4983 02735 03645 1000 12003
predbels] 02743 00415 535524 0.1%95 02725 03632 1000 12003
predbellf] 0.2695 0.0395 52144 0.1955 0268 03542 1000 12003
o predbel3] 0.2647 00503 654954 01631 02632 03685 1000 12003
pred.betf2] 0.2679 003992 02573 03393 1000 12003
pred bet{10]02569  0.04629 02575 0385 1000 12003
predbell1{]02533 0.0437 646254 0.A675 0220 033 1000 12003
B predbel12]02531  0.04337 50654 0.1687 0223 0.3409 1000 12003
predbell13]02520 0.4005 556954 0.4735 02831 03B 1000 12003
predbe(1<]0253 0.03992 62634 0.4741 0284 0337 1000 12003
pred bel{15]02533  0.04727 0224 03469 1000 12003
= predbell16]02475 0.03949 632554 0.1655 02485 0329 1000 12003
predbeli7T]02414 00417 TAS9Z4 0458 02424 032 1000 1200
T Py pes = s predbel1S]02379 0.06213 957824 0.A211 02%63 03629 1000 12003
-

In this graph we can see an initial oscilation for the chains, but

convergence is very fast anyway.

The results for this model show less “shrinkage” towards the

general mean.



