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The Essence of the Bayesian Approach

Observations X are random variables
Are Parameters Θ random variables?
Oxford English Dictionary: ”Parameter: a Constant Variable”
For Bayes, parameters are random variables, and then is able to
respond the scientific question:

Prob(Theory |Data) T

as oppposed to the Mathematical question:

Prob(Data|Theory) D

P-Values are Type D, but science is about Type T.
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Parameter Random Variables in Estimation and Testing

Testing:
H0 : θ = θ0 VS H1 : θ = θ1

What is the Prob(H0|Data)? So H0 is a Random Variable!
Estimation: Likelihood: Prob(X |θ1)
Level I: Prob(θ1|θ2)
Level II: Prob(θ2|θ3), So θ1 and θ2 are random variables.
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The Evidence, The Bayes Factor, The Posterior Probability

Hi : X has density fi (x |θi ), i = 0, . . . , I .

The Evidence: The marginal Likelihood

mi (x) =

∫
fi (x |θi )πi (θi )dθi .

The Bayes Factor of Mi to Mj :

Bji =
mj(x)

mi (x)

Posterior Model Probabilities:

P(Mi |x) =
P(Mi )mi (x)∑q
j=0 P(Mj)mj(x)



Testing: Bayes VS Non-Bayes: The difference is NOT
about Mathematics

Neyman-Pearson Lemma: Optimal Test To Minimize
a ∗ TypeIError + b ∗ TypeIIerror is

RejectH0 : if: LikelihoodRatio0,1 < b/a

The problem is how to choose b/a.

Pval = Prob(LikelihoodRatio0,1 < ObservedLikRatio)

b/a assigned indirectly.

Posterior Probabilities

Prior Probabilities
= Bayes Factor = LikRatio0,1 < r

b/a = r , say r = 1/20 assigned directly, so BOTH type I error and
Type II error go to zero as the sample size grows.
Pericchi and Pereira (2015) Brazilian Jour of Prob and Statistics,
for generalizations.
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The crisis of P-Values: Non Reproducible Findings

For many years there has been an important discussion on the
validity of methods for Null Hypothesis Significance Testing
(NHST).

As a worrying consequence of this controversy, statistical inference
methods are losing the trust of sectors of the scientific community,
as it is reflected by the recent editorial of Basic and Applied Social
Psychology (Trafimow and Marks, 2015) banning the use of
procedures as p-values, confidence intervals and related methods
from the papers published in BASP.
As the editors remark, “In the NHSTP, the problem is in traversing
the distance from the probability of the finding, given the null
hypothesis, to the probability of the null hypothesis, given the
finding”. Increasingly large sections of the scientific community are
speaking load and clear: p-values should no longer be the deciding
balance of science.
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How to convert P-Values into Bayes Factors to try to
reduce non-reproducible findings?
Calibrating the ”Robust Lower Bound”.

In Sellke, Bayarri and Berger (2001) (Infimum over Unimodal and
Symmetric Priors), a lower bound is proposed for calibrating
p-values when pval < e−1,

B01 ≥ BL(pval) = −epval loge(pval)

It is very simple and it can be easily calculated, but becomes less
informative when n increases.

Can we find a way of using the lower bound in the calibration of
Cα for the adaptive α levels?
Can we calibrate this lower bound to make it closer to the actual
value of a Bayes factor?
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Motivation

Lets go back to the approximation

−2log(B01) = −2 log(
f0(x|θ̂0)

f1(x|θ̂1)
)− q log(n∗) + C ∗

≈ χ2
α(q)− q log(n∗) + C ∗

Idea: Assuming α fixed, select C ∗ such that our approximation for
B01 equals BL(α) for fixed (typically low) value of n∗ (say nL).

A first obvious selection:

C ∗ = −2logBL(α) + q log(nL) + χ2
α(q)

where BL(α) = −eα logα.
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This leads to

B01 ≈ BL(α)

(
n∗

nL

) q
2

First reaction:

Too good to be true!

Lets compare the behavior of this approximation with the behavior
of Bayes factors based on proper objective priors (like intrinsic
priors and Berger’s robust priors) for several examples.

Two initial proposals for nL are nL = m + 1 and nL = 2m, where m
is the minimal training sample size.
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Example 1: Normal distribution, σ known

(Berger, J.O.and Pericchi L.R 2015. Bayes Factors. Encyclopedia
of Statistical Sciences.)

X1,X2, . . . ,Xn i.i.d sample from N(θ, σ2), σ2 known.

It is desired to test H0 : θ = θ0 vs H1 : θ 6= θ0.

Assume a prior for θ that is N(θ0, τ
2). It is also usual to select

τ2 = kσ2. In particular, k = 2 corresponds to the intrinsic prior for
θ

The Bayes factor obtained using the intrinsic prior is

B01 =
√

1 + 2n exp

(
−z2

2 + 1/n

)
where z =

√
n(x̄ − θ0)/σ
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Fixed α, n varying.
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Table of α to Posterior Probabiities of H0, NL = 4

N α 0.1 0.05 0.01 0.005 0.001 0.0005

4 0.38 0.29 0.1 0.07 0.02 0.01

20 0.58 0.48 0.22 0.14 0.04 0.02

50 0.69 0.59 0.31 0.20 0.06 0.03

Jeffreys Table of Evidence:
P(H0) > 0.5,H0 Supported, 0.5 > P(H0) > 0.25 Mild Evidence,
0.25 > P(H0) > 0.1 Substantial, 0.1 > P(H0) > 0.03 Strong

0.03 > P(H0) > 0.01 very strong, 0.01 > P(H0) Decisive.



Part II
Bayesian estimation in practice: Using MCMC software.



Bayesian estimation (as hypothesis testing) is based on the
posterior distribution.

p(θ|y) =
p(θ, y)

p(y)
=

p(θ)p(y |θ)

p(y)

where p(y) =
∫
p(θ)p(y |θ)dθ (continuous case)

The calculation of the integral in the denominator can be very
difficult (or even impossible analytically). This is specially true in
the high dimension case.



Markov Chain Monte Carlo methods

Instead of solving the integral(s), the usual approach is using
Markov Chain Monte Carlo methods to obtain samples from the
posterior distribution. Here “Monte Carlo” implies random
sampling, while “Markov Chains” refer to the method of
simulation: iterative methods in which each iterate depends only
on the previous one. MCMC algorithms are built to guarantee that
the stationary distribution of the chain is the desired posterior
distribution.



Correlation, convergence and “burn in”

As every sample depends on the previous one, contiguous samples
from the Markov Chain can be correlated. This fact have some
consequences:

I Selected initial values can impact on the simulation chain
until a large number of samples has been obtained. For this
reason, a certain number of initial observations is discarded.
(“burn in period”).

I Because of correlation, each observation gives only a fraction
of the information that would be obtained when using non
correlated iterates. so, if the correlation is high a large
number of samples will be needed to obtain precise results.



Convergence can be checked in several ways:

I Plot samples vs. iteration number. The behavior should
appear random.

I Run several chains using different initial values (they should
all converge to the same values)

I Formal convergence testing methods.



Some MCMC software

In many cases, existing software for MCMC methods can be used
(some complex cases require the researcher to code his/hers own
algorithms )

I BUGS (Bayes using Gibbs Sampler) Development of BUGS
began in 1989. Currently, the most used “flavors” are
WinBUGS (version 1.4.3, running over Windows) and
OpenBUGS (runing natively on Windows and Linux).

I JAGS (Just another Gibbs Sampler) Developed
independently, it runs natively on Windows, Mac, Linux and
several other varieties of Unix. It uses essentially the same
model description language than BUGS.

I STAN A more recent option, uses a similar model description
language but is conceptually different.

The examples shown in this talk use WinBUGS.



Example: Efron and Morris Baseball Data

Efron and Morris (1975, 1977) obtained a sample of batting
averages for 18 baseball player during the 1970 season. They used
the average obtained during the first 45 at-bats for predicting the
batting average for the rest of the season for each player.
The Direct Evidence Estimator is the individual MLE
(inadmissable and bad here), the Indirect Evidence Estimator is
the overall sample mean M=0.2654 (amazingly good here).



Batting average Batting average At bats
Player for first 45 for remainder for remainder

at bats of season of season

Clemente (Pitts, NL) 0.400 0.346 367
F. Robinson (Balt, AL) 0.378 0.298 426
F. Howard (Wash,AL) 0.356 0.276 521
Johnstone (Cal, AL) 0.333 0.222 275
Berry (Chi, AL) 0.311 0.273 418
Spencer (Cal, AL) 0.311 0.270 466
Kessinger (Chi, NL) 0.289 0.263 586
Alvarado (Bos, AL) 0.267 0.210 138
Santo (Chi, NL) 0.244 0.269 510
Swoboda (NY, NL) 0.244 0.230 200
Unser (Wash, AL) 0.222 0.264 277
Williams (Chi, AL) 0.222 0.256 270
Scott (Bos, AL) 0.222 0.303 435
Petrocelli (Bos, AL) 0.222 0.264 538
E. Rodriguez (KC, AL) 0.222 0.226 186
Campaneris (Oak, AL) 0.200 0.285 558
Munson (NY, AL) 0.178 0.316 408
Alvis (Mil, NL) 0.156 0.200 70

Table: Original data: 1970 batting averages for 18 MBL players. Overall
MEAN M=0.2654



How to Combine Direct and Indirect Evidence?

Efron and Morris assumption about the data is:

Yi ∼
1

45
Bin(45, pi )

where Yi is the batting average for the first 45 at-bats, and pi
depends on each player’s ability.



The batting average for the rest of the season, Ri can be modelled
as

Ri ∼
1

ni
Bin(ni , pi )

where ni is the number of at bats for player i during the remainder
of the season.
They applied a variance stabilizing transformation to Yi ,

Xi =
√

45 arcsin (2Yi − 1)

In the sequel, we will use the transformed variable.



Model 1: Empirical Bayes analysis using conjugate model

This analysis is equivalent to Efron and Morris (1975)

Xi ∼ Normal(µi , 1), i = 1, . . . , 18

µi ∼ Normal(M, σ2)

Here M = X̄ = −3.3166 and σ2 such that 1
(1+σ2)

= k−3∑k
i=1(Xi−X̄ )2

,

so τ = (σ2)−1 = 3.7853.
The calculations for this model can be made in closed form.



WinBUGS model:

model

{

for (i in 1: nplayers)

{

#

# Likelihood for X[i]= sqrt(45)*arcsin(2Y[i]-1)

#

X[i]~ dnorm(mu[i], 1)

mu[i]~ dnorm(Mu,tau)

pbat[i]<-0.5*(sin(mu[i]/sqrt(45.))+1)

}

#

# Predicted average for the rest of the season

#

for(i in 1:nplayers)

{

theta[i]<-mu[i]/sqrt(45)

R[i]~ dnorm(theta[i],atbat[i])

pred.bat[i]<-0.5*(sin(R[i])+1)

}

}



Data for the model

list(nplayers=18,X=c(-1.35074999608559, -1.65349439900760, -1.95971921115431,

-2.28443930236967, -2.60033503716442, -2.60033503716442, -2.92243068710524,

-3.25189908299015, -3.60573680589079, -3.60573680589079, -3.95492619729744,

-3.95492619729744, -3.95492619729744, -3.95492619729744, -3.95492619729744,

-4.31673666857481, -4.69383371133901, -5.08971235251556) ,

atbat=c(367, 426, 521, 275, 418, 466, 586, 138, 510, 200, 277, 270,435, 538,

186, 558, 408, 70),

tau=3.78527897894347, Mu=-3.31656313614355)



Some results for model 1



Model 2: Full Bayes hierarchical analysis with high tail
prior for the precision

Instead of assigning fixed values to M and σ2, we will assign
hyperpriors to them. In this example, we assign a ”vague” normal
(with large variance) to M and a high tail distribution to σ2 (a
Beta2 with parameters (1,1), which has polynomial tails)

Xi ∼ Normal(µi , 1), i = 1, . . . , 18

µi ∼ Normal(M, σ2)

M ∼ N(0, 105)

σ2 ∼ Beta2(1, 1)

This model cannot be calculated in closed form!



WinBUGS code:

model

{

for (i in 1: nplayers)

{

# Likelihood for X[i]= arcsin(2Y[i]-1)

X[i]~dnorm(mu[i], 1)

mu[i]~dnorm(Mu,tau)

pbat[i]<-0.5*(sin(mu[i]/sqrt(45.))+1)

}

# Prior for the common mean

Mu ~ dnorm(0,0.00001)

# Prior for the precision tau

tau<- 1/sigma2

P ~ dbeta(1,1)

sigma2 <- P/(1-P)

# Predicted average for the rest of the season

for(i in 1:nplayers)

{

theta[i]<-mu[i]/sqrt(45)

R[i]~dnorm(theta[i],atbat[i])

pred.bat[i]<-0.5*(sin(R[i])+1)

}

}



Data can be written in a similar way

In this graph we can see an initial oscilation for the chains, but
convergence is very fast anyway.
The results for this model show less “shrinkage” towards the
general mean.


